Iqsoft Guarantees Satisfaction

Or Your Money back !!!

Ask for a quote
An Energy Breakthrough Could Store Solar Power for Decades

An Energy Breakthrough Could Store Solar Power for Decades

Researchers in Sweden have created a molecule that offers a way to trap heat from the sun.
relates to An Energy Breakthrough Could Store Solar Power for Decades
Illustration: Khylin Woodrow for Bloomberg Businessweek

For decades, scientists have sought an affordable and effective way of capturing, storing, and releasing solar energy. Researchers in Sweden say they have a solution that would allow the power of the sun’s rays to be used across a range of consumer applications—heating everything from homes to vehicles.

Scientists at Chalmers University of Technology in Gothenburg have figured out how to harness the energy and keep it in reserve so it can be released on demand in the form of heat—even decades after it was captured. The innovations include an energy-trapping molecule, a storage system that promises to outperform traditional batteries, at least when it comes to heating, and an energy-storing laminate coating that can be applied to windows and textiles. The breakthroughs, from a team led by researcher Kasper Moth-Poulsen, have garnered praise within the scientific community. Now comes the real test: whether Moth-Poulsen can get investors to back his technology and take it to market.

The system starts with a liquid molecule made up of carbon, hydrogen, and nitrogen. When hit by sunlight, the molecule draws in the sun’s energy and holds it until a catalyst triggers its release as heat. The researchers spent almost a decade and $2.5 million to create a specialized storage unit, which Moth-Poulsen, a 40-year-old professor in the department of chemistry and chemical engineering, says has the stability to outlast the 5-to 10-year life span of typical lithium-ion batteries on the market today.

relates to An Energy Breakthrough Could Store Solar Power for Decades
Moth-Poulsen with a small sample of his molecular solar thermal liquid.
Photographer: Oscar Mattsson/Chalmers University of Technology

The most advanced potential commercial use the team developed is a transparent coating that can be applied to home windows, a moving vehicle, or even clothing. The coating collects solar energy and releases heat, reducing electricity required for heating spaces and curbing carbon emissions. Moth-Poulsen is coating an entire building on campus to showcase the technology. The ideal use in the early going, he says, is in relatively small spaces. “This could be heating of electrical vehicles or in houses.”

A big unknown is whether the system can produce electricity. While Moth-Poulsen believes the potential exists, his team is focused for now on heating. His research group is one of about 15 trying to tackle climate change with molecular thermal solar systems. Part of what motivates them is the Paris Agreement, which commits signatories to pursue efforts to limit global warming to 1.5C (2.7F).

Moth-Poulsen plans to spin off a company that would advance the technology and says he’s in talks with venture capital investors. The storage unit could be commercially available in as little as six years and the coating in three, pending the $5 million of additional funding he estimates will be needed to bring the coating to market. In May he won the Arnbergska Prize from the Royal Swedish Academy of Sciences for his solar energy projects.

The professor doesn’t have precise cost estimates for the technology but is aware that it will need to be affordable. One cost advantage is that the system doesn’t need any rare or expensive elements. Jeffrey Grossman, a professor in the department of materials science and engineering at the Massachusetts Institute of Technology who’s also developing energy storage molecules, calls the Chalmers University team’s work “crucial if we want to see this energy conversion storage approach commercialized.”

Peter Schossig, who runs the Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany, says he wants to help turn the Swedish team’s research into a product. But, he says, “There’s still a ways to go.”

Interstellar space even weirder than expected
An illustration shows the position of NASA’s Voyager 1 and Voyager 2 probes outside of the heliosphere, a protective bubble created by the sun that extends well past the orbit of Pluto.

Interstellar space even weirder than expected, NASA probe reveals

The spacecraft is just the second ever to venture beyond the boundary that separates us from the rest of the galaxy.

IN THE BLACKNESS of space billions of miles from home, NASA’s Voyager 2 marked a milestone of exploration, becoming just the second spacecraft ever to enter interstellar space in November 2018. Now, a day before the anniversary of that celestial exit, scientists have revealed what Voyager 2 saw as it crossed the threshold—and it’s giving humans new insight into some of the big mysteries of our solar system.

The findings, spread across five studies published today in Nature Astronomy, mark the first time that a spacecraft has directly sampled the electrically charged hazes, or plasmas, that fill both interstellar space and the solar system’s farthest outskirts. It’s another first for the spacecraft, which was launched in 1977 and performed the first—and only—flybys of the ice giant planets Uranus and Neptune. (Find out more about the Voyager probes’ “grand tour”—and why it almost didn’t happen.)

Voyager 2’s charge into interstellar space follows that of sibling Voyager 1, which accomplished the same feat in 2012. The two spacecrafts’ data have many features in common, such as the overall density of the particles they’ve encountered in interstellar space. But intriguingly, the twin craft also saw some key differences on their way out—raising new questions about our sun’s movement through the galaxy.

“This has really been a wonderful journey,” Voyager project scientist Ed Stone, a physicist at Caltech, said in a press briefing last week.

“It’s just really exciting that humankind is interstellar,” adds physicist Jamie Rankin, a postdoctoral researcher at Princeton University who wasn’t involved with the studies. “We have been interstellar travelers since Voyager 1 crossed, but now, Voyager 2’s cross is even more exciting, because we can now compare two very different locations … in the interstellar medium.”


Launch: September 5, 1977


Launch: August 20, 1977


March 5, 1979

July 9, 1979


Current distance

from the sun

Billions of miles

August 2012

Voyager 1 leaves

heliosphere, enters

interstellar space


August 25, 1989





January 24, 1986

Voyagers 1 and 2 were launched 40 years ago on a mission to explore the outer solar system. After encountering Saturn, Voyager 1 angled upward. Voyager 2 went on to visit Uranus and Neptune before angling downward.


November 12, 1980

August 25, 1981

Mercury, Venus, and Mars

omitted for clarity


Inside the bubble

To make sense of Voyager 2’s latest findings, it helps to know that the sun isn’t a quietly burning ball of light. Our star is a raging nuclear furnace hurtling through the galaxy at about 450,000 miles an hour as it orbits the galactic center.

The sun is also rent through with twisted, braided magnetic fields and, as a result, its surface constantly throws off a breeze of electrically charged particles called the solar wind. This gust rushes out in all directions, carrying the sun’s magnetic field with it. Eventually, the solar wind smashes into the interstellar medium, the debris from ancient stellar explosions that lurks in the spaces between stars.

Like oil and water, the solar wind and the interstellar medium don’t perfectly mix, so the solar wind forms a bubble within the interstellar medium called the heliosphere. Based on Voyager data, this bubble extends about 11 billion miles from the sun at its leading edge, surrounding the sun, all eight planets, and much of the outer objects orbiting our star. Good thing, too: The protective heliosphere shields everything inside it, including our fragile DNA, from most of the galaxy’s highest-energy radiation.

The heliosphere’s outermost edge, called the heliopause, marks the start of interstellar space. Understanding this threshold has implications for our picture of the sun’s journey through the galaxy, which in turn can tell us more about the situations of other stars scattered across the cosmos.

“We are trying to understand the nature of that boundary, where these two winds collide and mix,” Stone said during the briefing. “How do they mix, and how much spillage is there from inside to outside the bubble, and from outside the bubble to inside?”

Scientists got their first good look at the heliopause on August 25, 2012, when Voyager 1 first entered interstellar space. What they began to see left them scratching their heads. For instance, researchers now know that the interstellar magnetic field is about two to three times stronger than expected, which means, in turn, that interstellar particles exert up to ten times as much pressure on our heliosphere than previously thought.

“It is our first platform to actually experience the interstellar medium, so it is quite literally a pathfinder for us,” says heliophysicist Patrick Koehn, a program scientist at NASA headquarters.

Leaky boundary

But for all that Voyager 1 upended expectations, its revelations were incomplete. Back in 1980, its instrument that measured the temperature of plasmas stopped working. Voyager 2’s plasma instrument is still working just fine, though, so when it crossed the heliopause on November 5, 2018, scientists could get a much better look at this border.

For the first time, researchers could see that as an object gets within 140 million miles of the heliopause, the plasma surrounding it slows, heats up, and gets more dense. And on the other side of the boundary, the interstellar medium is at least 54,000 degrees Fahrenheit, which is hotter than expected. However, this plasma is so thin and diffuse, the average temperature around the Voyager probes remains extremely cold.



WATCH: The two Voyager spacecraft explored the giant planets of our solar system and are now heading for the stars.


In addition, Voyager 2 confirmed that the heliopause is one leaky border—and the leaks go both ways. Before Voyager 1 passed through the heliopause, it zoomed through tendrils of interstellar particles that had punched into the heliopause like tree roots through rock. Voyager 2, however, saw a trickle of low-energy particles that extended more than a hundred million miles beyond the heliopause.

Another mystery appeared as Voyager 1 came within 800 million miles of the heliopause, where it entered a limbo-like area in which the outbound solar wind slowed to a crawl. Before it crossed the heliopause, Voyager 2 saw the solar wind form an altogether different kind of layer that, oddly, was nearly the same width as the stagnant one seen by Voyager 1.

“That is very, very weird,” Koehn says. “It really shows us that we need more data.”

Interstellar sequel?

Solving these puzzles will require a better view of the heliosphere as a whole. Voyager 1 exited near the heliosphere’s leading edge, where it collides with the interstellar medium, and Voyager 2 exited along its left flank. We have no data on the heliosphere’s wake, so its overall shape remains a mystery. The interstellar medium’s pressure might keep the heliosphere roughly spherical, but it’s also possible that it has a tail like a comet—or that it is shaped like a croissant.

But while other spacecraft are currently outward bound, they won’t be able to return data from the heliopause. NASA’s New Horizons spacecraft is zooming out of the solar system at more than 31,000 miles an hour, and when it runs out of power in the 2030s, it’ll fall silent more than a billion miles short of the heliosphere’s outer edge. That’s why Voyager scientists and others are calling for a follow-up interstellar probe. The goal: a 50-year, multi-generation mission that explores the outer solar system on its way into unexplored regions beyond the solar wind.

“Here’s an entire bubble, [and] we only crossed it with two points,” study coauthor Stamatios Krimigis, the emeritus head of the Johns Hopkins University Applied Physics Laboratory’s space department, said at the briefing. “Two examples are not enough.”

A new generation of scientists is eager to run with the baton—including Rankin, who did her Ph.D. at Caltech with Voyager 1’s interstellar data with Stone as her adviser.

“It was amazing to work on this cutting-edge data from spacecraft that were launched before I was born and still doing amazing science,” she says. “I’m just really thankful for all the people who have spent so much time on Voyager.”